
Draf
t

Security Assessment
Final v2 Report

June 2025

Prepared for Heaven

Table of contents
Project Summary...3

Project Scope.. 3
Project Overview... 3

Protocol Overview... 3
Findings Summary.. 4
Severity Matrix...4

Detailed Findings.. 5
High Severity Issues... 6
H-01 claim_standard_creator_trading_fees does not check if the trading volume has been reached...........6
H-02 Slot_offset fees cannot be enabled for protocol_trading fee and liquidity_provider fee......................... 8
Medium Severity Issues..10
M-01 create_liquidity_pool_standard can overspend from payer without explicit cap.................................. 10
M-02 update_protocol_config does not check valid fee config..12
M-03 Inconsistent rounding can lead to edge cases where the swap returns tokens > max_limit, causing a
revert... 13
M-04 amount_in calculation does not consider fees, causing sub-optimal trades and making it very difficult
to buy up to maximum limit..15
Low Severity Issues.. 17
L-01 Updating supported_pool_type will lead to corrupted pools..17
L-02 admin_mint_msol does not limit staking up to any % of available liquidity, which can break all pools. 18
L-03 admin_unstake_msol breaks if yield is lower than historical cost... 19
Informational Issues... 21
I-01. max_creator_trading_fee_bps returns global constraint instead of max actual fee.............................. 21
I-02. Changing standard pool fee mode freezes fees to deploy status without update possibility................ 22
I-03. assert_input_equal_token_supply is not used.. 22
I-04. assert_processed_fee_status named could be clarified... 23
I-05. Allowing supported_pool_type None is redundant..23
I-06. checked_sub has an error message stating Overflow.. 24
I-07. credit from debt_and_credit is never used.. 25
I-08. Unused variable in unstake_msol... 25
I-09. Naming ambiguity in fee and staking create functions..26
I-10. Unused functions in token_util.. 27
I-11. Input parameter order in transfer_with_hook can lead to errors... 27
I-12. Unused circulating_lp_token_supply function... 28

Disclaimer.. 29
About Certora.. 29

 2

Project Summary
Project Scope

Project Name Repository (link) Audited Commits Platform

Heaven AMM
https://github.com/heavenxyz/
heaven-amm

996ba64 Solana

Heaven AMM
https://github.com/heavenxyz/
heaven-amm

20d6e9d Solana

Project Overview

This document describes the findings obtained during the manual code review of Heaven AMM.
The work was undertaken in 2 separate phases:

- June 2nd to June 12th: commit 996ba640a48af3bdc55a16b86913761282291c93
- June 16th to June 27th: commit 20d6e9d2f5b545af69d20d19cdaeac499b5809e7

At the request of the client, these two phases have been consolidated into one report.

The scope covers all files within the following folder structure:

{programs/heaven-anchor-amm/src/...}

Protocol Overview
Heaven AMM is a decentralized exchange protocol on Solana aiming to facilitate fair token
launches through a constant product market maker (x*y=k) for token pair liquidity pools and
sandwich resistance mechanisms.

It operates with a dual function as both a token launchpad and a trading venue with
customizable tokenomics support. Technically, the system implements dynamic fee structures
based on market capitalization calculations, with bracket-based fee tiers. The protocol classifies

 3

tokens using a TaxableSide taxonomy to determine appropriate execution paths for different
trade types (Buy, Sell, Swap). It implements mathematical protections against MEV through
sandwich resistance algorithms that detect price manipulation attempts and implements virtual
orders to mitigate front-running attacks.

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical - - -

High 2 2 2

Medium 4 4 4

Low 3 3 1

Informational 12 12 3

Total 21 21 11

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

 4

Detailed Findings

ID Title Severity Status

H-01 claim_standard_creator_trading_fees does not
check if the trading volume has been reached

High Fixed

H-02 Slot_offset fees cannot be enabled for
protocol_trading fee and liquidity_provider fee

High Fixed

M-01 create_liquidity_pool_standard can overspend from
payer without explicit cap

Medium Fixed

M-02 update_protocol_config does not check valid fee
config

Medium Fixed

M-03 Inconsistent rounding can lead to edge cases where
the swap returns tokens > max_limit, causing a revert

Medium Fixed

M-04 amount_in calculation does not consider fees,
causing users to be unable to buy up to maximum
limit

Medium Fixed

L-01 Updating supported_pool_type will lead to corrupted
pools

Low Fixed

L-02 admin_mint_msol does not limit staking up to any %
of available liquidity, which can break all pools

Low Acknowledged

L-03 admin_unstake_msol breaks if yield is lower than
historical cost

Low Acknowledged

 5

High Severity Issues

H-01 claim_standard_creator_trading_fees does not check if the trading volume
has been reached

Severity: High Impact: Medium Likelihood: High

Files:
swap.rs#806

Status: fixed in f208d

Description:

The protocol pool configuration includes a field called creator_trading_fee_
trading_volume_threshold, which defines the minimum cumulative trading volume (in USD)
that must be reached before a pool creator becomes eligible to claim their

creator_trading_fee.

Trading volume is incremented using the increment_trade_volume_usd function, which is
called during buy and sell operations. When the threshold is crossed, the

creator_trading_fee_trading_volume_threshold_reached_unix_timestamp field is
updated.

However, this updated value is never checked during fee claiming in either of the claim
functions:

● claim_standard_creator_trading_fees
● admin_claim_standard_creator_trading_fees

This contradicts the intended behavior as described in the sponsor system documentation,
which states:

“claim_standard_creator_trading_fee / admin_claim_standard_creator_trading_fee
allows the creator of a standard liquidity pool to claim their trading fees only if these

 6

https://github.com/heavenxyz/heaven-amm/blob/7d9a2c94fa42c1fc3a9a7cb68e58e2e49a2a5377/programs/heaven-anchor-amm/src/instructions/swap.rs#L806-L856
https://github.com/heavenxyz/heaven-amm/pull/8/commits/f208d8d3fdd74b8d9f3083eb330d059499532efc
https://github.com/heavenxyz/heaven-amm/blob/7d9a2c94fa42c1fc3a9a7cb68e58e2e49a2a5377/programs/heaven-anchor-amm/src/instructions/liquidity_pool/state.rs#L941-L951

conditions are met: pool has equal to or more than $250K in trading volume
(buy/sell)...”

As a result, fees may be claimed even if the required trading volume threshold has not been
reached, violating a key system invariant.

Recommendations:

It is recommended in the functions admin_claim_standard_creator_trading_fees and
claim_standard_creator_trading_fees to implement a check to ensure that the required
trading volume is reached.

Customer’s response: fixed in f208d

Fix Review: The issue has been resolved for the non-admin function, which now only unlocks
when the defined threshold has been reached. For the admin function the protocol has chosen
to explicitly not set this threshold. This does conflict with the project documentation.

 7

https://github.com/heavenxyz/heaven-amm/pull/8/commits/f208d8d3fdd74b8d9f3083eb330d059499532efc

Rust

Rust

H-02 Slot_offset fees cannot be enabled for protocol_trading fee and
liquidity_provider fee

Severity: High Impact: Medium Likelihood: High

Files: protocol.rs#2237

Status: fixed in 5720

Description:

The slot_offset_trading_fees are set through the admin function

set_protocol_slot_fees.

Once set, whenever calculate_fee is called, it will check if

slot_offset_based_fee.is_enabled() to determine whether to apply market or slot fees.

if slot_offset_based_fee.is_enabled()
 && slot_offset <= slot_offset_based_fee.max_slot_offset as u64
{
 slot_offset_based_fee.get_fee(slot_offset, trade_type, amount_in)
} else {
 market_cap_based_fee.get_fee(current_market_cap, trade_type, amount_in)
}

However, 2 types of slot fees, the set_slot_protocol_trading_fee and the

set_slot_liquidity_provider_trading_fee, are not enabled when they are set.

 pub fn set_slot_protocol_trading_fee(
 &mut self,
 mut brackets: SlotFeeBracketsParams,
) -> &mut Self {
 brackets.sort_brackets();
 brackets.assert_valid();
 self.slot_offset_based_fees.protocol_trading_fee.count = brackets.count;
 self.slot_offset_based_fees.protocol_trading_fee.max_slot_offset =
brackets.max_slot_offset;
 self.slot_offset_based_fees.protocol_trading_fee.max_fee_bps = brackets.max_fee_bps;

 8

https://github.com/heavenxyz/heaven-amm/blob/996ba640a48af3bdc55a16b86913761282291c93/programs/heaven-anchor-amm/src/instructions/protocol.rs#L2237-L2264
https://github.com/heavenxyz/heaven-amm/pull/8/commits/57200c4ef7b4920de29db944386907c3cd386047

Rust

 self.slot_offset_based_fees.protocol_trading_fee.brackets[..brackets.count as usize]
 .copy_from_slice(&brackets.brackets[..brackets.count as usize]);
 self
 }

 pub fn set_slot_liquidity_provider_trading_fee(
 &mut self,
 mut brackets: SlotFeeBracketsParams,
) -> &mut Self {
 brackets.sort_brackets();
 brackets.assert_valid();
 self.slot_offset_based_fees.liquidity_provider_trading_fee.count = brackets.count;
 self.slot_offset_based_fees.liquidity_provider_trading_fee.max_slot_offset =
brackets.max_slot_offset;
 self.slot_offset_based_fees.liquidity_provider_trading_fee.max_fee_bps =
brackets.max_fee_bps;
 self.slot_offset_based_fees.liquidity_provider_trading_fee.brackets[..brackets.count
as usize]
 .copy_from_slice(&brackets.brackets[..brackets.count as usize]);

 self
 }

As a result, even though the admins have set the slot_fees, the market fees will always be
applied for these 2 fee types.

Recommendations:

Add the lines:

self.slot_offset_based_fees.protocol_trading_fee.enabled = brackets.enabled;
self.slot_offset_based_fees.liquidity_provider_trading_fee.enabled = brackets.enabled;

Customer’s response: fixed in 5720

Fix Review: The issue has been resolved.

 9

https://github.com/heavenxyz/heaven-amm/pull/8/commits/57200c4ef7b4920de29db944386907c3cd386047

Rust

Medium Severity Issues

M-01 create_liquidity_pool_standard can overspend from payer without explicit
cap

Severity: Medium Impact: High Likelihood: Low

Files:
mod.rs#232

Status: fixed in 6def

Description:

In the create_liquidity_pool_standard function, both the user and the payer are
required to sign. While these are often the same entity, valid use cases exist where:

● The user is a smart wallet or multisig managing the pool,

● The payer is a third-party sponsor covering account creation and initial SOL contribution.

The function allows the user to specify an initial_purchase_amount, representing the
number of tokens to be bought without fees during pool initialization. However, the SOL input

required (amount_in) is calculated dynamically based on:

● The protocol’s current target_market_cap, which is admin-controlled, and
● The live SOL/USD price, which may change with market conditions.

The calculated amount_in is pulled directly from the payer’s balance, not the user’s.

 pub fn from_target_market_cap(
 initial_base: u64,
 target_market_cap: f64,
 current_sol_price: f64,
 leader_slot_window: u8,
) -> Self {
 let initial_quote =
 Self::calculate_quote_reserve_by_market_cap(target_market_cap,
current_sol_price);

 10

https://github.com/heavenxyz/heaven-amm/blob/7d9a2c94fa42c1fc3a9a7cb68e58e2e49a2a5377/programs/heaven-anchor-amm/src/instructions/liquidity_pool/mod.rs#L232-L233
https://github.com/heavenxyz/heaven-amm/tree/6defba0ca554cf311e75970e337235cfaed2e265

 let mut reserve = Self {
 token_a: initial_base,
 token_b: initial_quote,
 leader_slot_window,
 initial_a: initial_base,
 initial_b: initial_quote,
 ..Default::default()
 };
 reserve.snapshot();
 reserve
 }
 ...

 let amount_in = TokenSwapCalculator::<ConstantProduct>::calculate_swap_exact_out(
 U128::from(initial_purchase_amount),
 &SwapDirection::TokenB2TokenA,
 token_a_reserve,
 token_b_reserve,
)
 .as_u64();

Once the payer signs the transaction (or associated instructions), the user can delay execution,
waiting for conditions that increase the cost to the payer. For example:

● Waiting for the SOL price to drop, increasing how much is required to match the target
market cap.

● Waiting for the admin to update target_market_cap, affecting how much token B
reserve is needed.

Since amount_in is computed only at execution time, the payer has no guarantee that the cost
will match what they signed off on.

Recommendations: Introduce a max_amount_in parameter to explicitly cap the amount of SOL
the payer is willing to contribute.

Customer’s response: fixed in 6def

Fix Review: The issue has been resolved.

 11

https://github.com/heavenxyz/heaven-amm/tree/6defba0ca554cf311e75970e337235cfaed2e265

Rust

M-02 update_protocol_config does not check valid fee config

Severity: Medium Impact: High Likelihood: Low

Files:
protocol.rs#526

Status: fixed in f73d

Description:

In create_protocol_config, we can see that fee configuration is checked through a call to

assert_valid_fees_config.

However, in update_protocol_config, this assert is missing. This can lead to a situation where
an update protocol call with new fees could exceed 100%, thereby breaking the entire protocol.

Recommendations:

Include the below assert after the state has been updated:

state.assert_valid_fees_config();

Customer’s response: fixed in f73d

Fix Review: The issue has been resolved.

 12

https://github.com/heavenxyz/heaven-amm/blob/996ba640a48af3bdc55a16b86913761282291c93/programs/heaven-anchor-amm/src/instructions/protocol.rs#L526-L566
https://github.com/heavenxyz/heaven-amm/pull/8/commits/f73daad9d7fd8153cb442d58696585acffbf2119
https://github.com/heavenxyz/heaven-amm/pull/8/commits/f73daad9d7fd8153cb442d58696585acffbf2119

Rust

M-03 Inconsistent rounding can lead to edge cases where the swap returns tokens >
max_limit, causing a revert

Severity: Medium Impact: High Likelihood: Low

Files:
swap.rs#112

Status: fixed in 8d07

Description:

The protocol has 2 functions that return an amount required to buy a certain amount of tokens.

● calculate_swap_exact_out (uses CEILING rounding for the denominator)

● calculate_swap_exact_in (uses FLOOR rounding for the denominator)

Both are legitimate ways of calculating the required amount, but due to the difference in
rounding, the amounts returned will be slightly different.

In the buy function, assuming max_sol_spend is larger, the amount_in to purchase the

maximum amount of tokens is calculated using the first method which uses Ceiling rounding.

However, in the swap_exact_in function, the actual transfer of tokens is done through the

calculate_swap_in function, which uses Floor rounding.

Due to this, in the edge-case where there are no fees, this can cause the

user_token_a_vault_amount to exceed the max_supply_per_wallet by 1 Token.

Example:
User balance= 0 Tokens
Max_supply_per_wallet = 1000 Tokens
calculate_swap_exact_out = 2.8754 SOL is required to buy 1000 Tokens.
NOTE: the amount is slightly overestimated due to Ceiling rounding in the denominator.
Then in swap_exact_in, the amount of tokens returned for 2.8754 is calculated through
calculate_swap_exact_in, which uses Floor rounding.
output = 1001 Tokens

 13

https://github.com/heavenxyz/heaven-amm/blob/996ba640a48af3bdc55a16b86913761282291c93/programs/heaven-anchor-amm/src/instructions/swap.rs#L112
https://github.com/heavenxyz/heaven-amm/pull/8/commits/8d071cc3a1f173d3c89475c34338ec697fd813da

Rust

This will then cause a revert on line:

assert!(
 ctx.accounts.user_token_a_vault.amount <= max_supply_per_wallet,
 "user_token_a_vault.amount must be less than or equal to max_supply_per_wallet"
);
 // 1001 <= 1000 This will revert the transaction

Having valid transactions revert is normally a critical issue in an AMM. However, this case can only

occur in Heaven when there are no fees at all. Even the slightest fee, 1 bps, would fully absorb
the calculation error.

This can be confirmed by running test_standard_liquidity_pool_swap_token_b_to_token_a

with buy_fee_bps set to 0.

Recommendations:

Harmonize the rounding used to be consistent Floor or Ceiling.

Customer’s response: fixed in 8d07

Fix Review: The mathematical inconsistency persists, but adding a buffer does solve the issue
of transactions reverting.

 14

https://github.com/heavenxyz/heaven-amm/pull/8/commits/8d071cc3a1f173d3c89475c34338ec697fd813da

Rust

M-04 amount_in calculation does not consider fees, causing sub-optimal trades
and making it very difficult to buy up to maximum limit

Severity: Medium Impact: Medium Likelihood: Medium

Files:
swap.rs#112

Status: fixed in 69ae

Description:

Within the buy() function, the amount of SOL that is exchanged for token_a, is determined by
taking the minimum between max_sol_spend and the output of calculate_swap_exact_out,
which is based on the max_purchasable_amount.

This value is then sent to swap_exact_in to be exchanged into token_a tokens.

However, the value is solely calculated on the state of the reserves and does not take into
account that fees will reduce the amount before it is exchanged.

As a result, the user will receive less tokens.

Example:

max_purchasable_amount = 1000
max_sol_spend = 10 SOL
Amount calculated from calculate_swap_exact_out = 5 SOL
fees = 2000 bps

5 SOL < 10 SOl => swap_exact_in is called with 5 SOl
fees get deducted from the amount: 5 * 0.8 = 4 SOL
The 4 SOL is exchanged for 800 tokens.

This has two main impacts:

 15

https://github.com/heavenxyz/heaven-amm/blob/996ba640a48af3bdc55a16b86913761282291c93/programs/heaven-anchor-amm/src/instructions/swap.rs#L112
https://github.com/heavenxyz/heaven-amm/commit/69ae221a3c5d8ac35488fcb9850b4644cfac8501

- Whenever the user indicates a great willingness to buy tokens by setting a high
max_sol_spend, the logic will choose the calculated value and the user will paradoxically
receive less tokens compared to setting a lower value.

- It is very difficult for any user to buy tokens up to max_supply_per_wallet since the fee
delta will make sure there is always a gap remaining between the limit and actual tokens
bought. This would require either dozens of transactions to make the fee delta
inconsequential or a series of transactions with an extremely low max_sol_spend. Neither
are options that should be required under normal circumstances.

NOTE: This would normally also cause a significant issue with the slippage control parameter
minimum_out, since the fee delta is sufficiently large to cause reverts. However, per
communication by protocol developers, the minimum_out parameter is not a user-provided
input but will be calculated by the frontend and will take the fee effect into account. Thereby
preventing reverts due to slippage mismatch.

Recommendations:

The amount calculated in calculate_swap_exact_out needs to take the fee deduction into
account.

Customer’s response: fixed in 69ae

Fix Review: The issue has been resolved.

 16

https://github.com/heavenxyz/heaven-amm/commit/69ae221a3c5d8ac35488fcb9850b4644cfac8501

Low Severity Issues

L-01 Updating supported_pool_type will lead to corrupted pools

Severity: Low Impact: High Likelihood: High

Files:
protocol.rs#552

Status: fixed in f73d

Description:

The update_protocol_config function allows changing supported_pool_type after initial
deployment, which can create a fundamental mismatch between pool types and their fee

configurations. Both Standard and Pro pools inherit their fee structure from the same protocol
config, so changing the supported pool type allows creation of pools with incorrect economic
parameters.

When a protocol is deployed with supported_pool_type = Standard, all fee configurations
are set for Standard pools. If an admin later changes this to Pro, newly created Pro pools will
inherit the Standard pool fee structure instead of appropriate Pro pool fees, breaking the
intended economic model.

● Economic Model Breakdown: Pro pools operating with Standard fees (or vice versa)
completely undermines the protocol's fee design

● Operational Inconsistency: Mixed pool types with mismatched configurations create
unpredictable behavior

● Protocol Integrity Loss: The fundamental distinction between pool types becomes
meaningless when fees don't match the pool type

Recommendations: The supported_pool_type should be immutable after initial protocol
creation, so the set_supported_pool_type should be removed from update_protocol_config.

Customer’s response: fixed in f73d

Fix Review: The functionality has been removed, which resolves the issue.

 17

https://github.com/heavenxyz/heaven-amm/blob/996ba640a48af3bdc55a16b86913761282291c93/programs/heaven-anchor-amm/src/instructions/protocol.rs#L552
https://github.com/heavenxyz/heaven-amm/pull/8/commits/f73daad9d7fd8153cb442d58696585acffbf2119
https://github.com/heavenxyz/heaven-amm/pull/8/commits/f73daad9d7fd8153cb442d58696585acffbf2119

L-02 admin_mint_msol does not limit staking up to any % of available liquidity,
which can break all pools

Severity: Low Impact: Low Likelihood: Low

Files:
protocol.rs#326

Status: Acknowledged

Description:

The admin_mint_msol function allows the owner to stake available liquidity in Marinade for
additional yield.

The amount that can be staked is equal to 100% of ALL SOL available in heaven since

sol_available_for_stake == unstaked_wsol_reserve.

If a large amount of SOL were to be staked, it is possible that due to market actions, the
requirement for SOL would be greater than the remaining SOL present in the protocol.

In such a case, all Sell operations would fail due to insufficient liquidity.

Recommendations:

Introduce a protocol config variable minimal_liquidity in BPS and use it in the function to
ensure that only a certain % of liquidity can be staked.

Customer’s response: This is a design choice since the optimal amount of sol to be deposited
is something which requires careful consideration, which cannot be done through automated
logic. So we acknowledge the possibility, but we believe this is the better approach.

Fix Review: Acknowledged.

 18

https://github.com/heavenxyz/heaven-amm/blob/8d071cc3a1f173d3c89475c34338ec697fd813da/programs/heaven-anchor-amm/src/instructions/protocol.rs#L326

Rust

L-03 admin_unstake_msol breaks if yield is lower than historical cost

Severity: Low Impact: Low Likelihood: Low

Files:
protocol.rs#204

Status: Acknowledged

Description:

The protocol uses the delayed unstake to retrieve msol from marinade. During the

admin_unstake_msol call, a cost_basis is calculated using the total_sol_spent and

total_msol_received. This gives an historical average dating from the inception of the
protocol.

When the msol is actually claimed, this value is compared against the current market and profit

is calculated by subtracting actual_received with cost_basis.

state.cost_basis = U128::from(amount)
 .checked_mul(U128::from(config.total_sol_spent)) // Historical average
 .checked_ceil_div(U128::from(config.total_msol_received))
 .0.as_u64();

let actual_received = lending.claim_msol(...); // Current market rate
let profits = actual_received
 .checked_sub(cost_basis)
 .expect("Overflow occurred while calculating profits"); // PANICS if actual < cost_basis

This only works if the current value is always greater than the historical average. There are
however black swan events where this will not be the case.

This can be:

● Hack of Marinade
● Reputation loss through scandals
● Upgrade gone wrong, which impacts functionality, etc..

 19

https://github.com/heavenxyz/heaven-amm/blob/20d6e9d2f5b545af69d20d19cdaeac499b5809e7/programs/heaven-anchor-amm/src/instructions/protocol.rs#L204-L286

Rust

Rust

All these can significantly reduce the value of mSOL by a vast amount.

EXAMPLE: 40% mSOL Devaluation Scenario
Setup:
- Heaven historical average: 1.05 SOL per mSOL
- Admin unstakes 1,000 mSOL
- Cost basis = 1,050 SOL

10 Hours Later:
- Black swan: mSOL depegs 40% to 0.63 SOL per mSOL
- Admin claims: actual_received = 630 SOL
- Calculation: 630 - 1,050 = -420 SOL

Result:
- checked_sub() returns None for negative result
- expect() panics: "Overflow occurred while calculating profits"
- 1,000 mSOL ticket permanently locked
- 630 SOL value locked

When such events happen, it is very unlikely that the value increases again to the point of profit.
The only way to retrieve whatever value is left, is to hotfix the protocol with an additional direct

unstake function and get the remaining SOL back this way.

Recommendations: Either add an emergency direct admin unstake function to retrieve the
SOL or allow for the possibility of loss.

if actual_received >= cost_basis {
 let profits = actual_received - cost_basis;
 config.total_realized_profit = config.total_realized_profit.checked_add(profits)?;
} else {
 let loss = cost_basis - actual_received;
 config.total_realized_profit = config.total_realized_profit.checked_sub(loss)?;
}

Customer’s response: Acknowledged, but this is resolved through a quick protocol upgrade or
direct negotiations with Marinade.

Fix Review: Acknowledged.

 20

Informational Issues

I-01. max_creator_trading_fee_bps returns global constraint instead of max actual
fee

Description:
In the assert_valid_fees_config function, the max actual fee per type is located and added
together to ensure that a situation where fees > 100% is not possible.

However, for the creator_trading_fees, in contrast to the other fee types, the logic does not

compare between market_cap and slot_offset fees and returns the greatest value.

Instead, it compares the slot_offset trading fee with the global constraint

max_creator_trading_fee and then always returns the global constraint since that is the
theoretical maximum and not the actual fee.

As a result, the total_bps will be overinflated and this can cause a valid fee config to be
rejected in rare cases.

Recommendation:
Change the max_creator_trading_fee_bps to follow the same logic as the other fee types.

Customer’s response: Since this requires an admin setting an extremely unrealistic
creator_trading_fee, we acknowledge the theoretical possibility.

Fix Review: Acknowledged

 21

I-02. Changing standard pool fee mode freezes fees to deploy status without update
possibility

Description:
When a pool is created, the FeeConfigurationMode is hardcoded to Global. The creation
process does copy the global fee config to local, but there are no functions to update these local
values.

If an admin calls admin_update_standard_liquidity_pool_state and changes the

FeeConfigurationMode from Global to Local, the logic will use the fee structure copied from
the global config at deployment.

This can be problematic since it is quite possible the global fee structure has changed since

deployment and there is no user nor admin function to update the Local fees on a Standard
pool.

Recommendation:
Remove the FeeConfigurationMode from the admin_update_standard_liquidity_pool_state,
there should never be a reason to change the fee mode on a Standard pool.

Customer’s response: This requires an admin to make a massive mistake, so very unlikely to
ever happen. Acknowledged.

Fix Review: Acknowledged

I-03. assert_input_equal_token_supply is not used

Description:
The pub fn assert_input_equal_token_supply function is declared but never used in the
protocol.

Recommendation:
Remove unused functions

Customer’s response: fixed.

Fix Review: The function has been removed.

 22

I-04. assert_processed_fee_status named could be clarified

Description:
The naming of the assert_processed_fee_status does not let the reader know what about the
status is being asserted and requires reading the actual function logic to understand.

Recommendation:
Change the naming to: assert_fee_status_is_processed

Customer’s response: Naming has been changed

Fix Review: fixed

I-05. Allowing supported_pool_type None is redundant

Description:
The create_pool_config function calls set_supported_pool_type to set a pool to either
Standard or Pro.

However, the enum also allows a type None. This would break the pool config since many if not all
core functions can only work with either a standard or pro pool.

Since emergency pause functionality is already covered through the allow_create_pool, there

is no reason to have the None option.

Recommendation:
Remove the None from the enum to avoid it being set by accident.

Customer’s response: Removed since there are no more Pro pools.

Fix Review: fixed.

 23

Rust

Rust

I-06. checked_sub has an error message stating Overflow

Description:
Whenever a calculation uses checked_sub, the error message erroneously states that an
Overflow occurred. This occurs with every use of checked_sub throughout the protocol.

Example:

 .checked_sub(amount)
 .expect("Overflow occurred while calculating total_realized_profit");

Recommendation:
Change the message to:

"Underflow"

Customer’s response: Acknowledged

Fix Review: Acknowledged

 24

Rust

I-07. credit from debt_and_credit is never used

Description:
The debt_and_credit helper function is used by 4 admin functions:

● admin_borrow_sol
● admin_deposit_msol
● admin_repay_sol
● admin_withdraw_sol

In each case, the debt and credit variable are defined but in every case the credit variable is

not used. Only debt is used.

Since credit is never used, it is a code inefficiency and computational unit waste to call

kamino.get_credit when it is unused.

Recommendation:
Refactor debt_and_credit to only call and return debt.

Customer’s response: Acknowledged
Fix Review: Acknowledged

I-08. Unused variable in unstake_msol

Description:

There is a variable in unstake_msol, which is defined but never used.

let msol_balance = self.temp_sol_holder_msol_vault().balance()?;

Recommendation:
Unused variables should be removed

Customer’s response: Acknowledged
Fix Review: Acknowledged

 25

I-09. Naming ambiguity in fee and staking create functions

Description:
The create_or_update_protocol_fee_admin and

create_or_update_protocol_staking_admin functions set the fee and staking admin for
the protocol.

However, in the state field, both are called current_protocol_admin, which leads to confusion
when called in the code.

The pub fn assert_protocol_admin for example, gives no indication to which admin is being

checked. This is used in the update_allow_create_pool function, where only after digging
through the struct does it become clear that it is the Fee admin that can call this function.

Recommendation:
Change the naming to:

● current_fee_admin
● current_staking_admin

Customer’s response: Acknowledged

Fix Review: Acknowledged

 26

I-10. Unused functions in token_util

Description:
There are several functions in token_util.rs which are defined but never used anywhere in the
protocol.

● checked_sufficient_balance
● get_transfer_fee
● get_transfer_inverse_fee

Recommendation:
Unused functions should be removed.

Customer’s response: Acknowledged

Fix Review: Acknowledged

I-11. Input parameter order in transfer_with_hook can lead to errors

Description:
The transfer_with_hook function expects the following input accounts:

● authority
● from
● to
● mint

But the standard order for Token_2022 transfer_checked is:

● token program
● from
● mint
● to

The to and mint are inverted. This can lead to input errors which would cause transactions to
revert. Since the functionality is not yet active, this is graded as an Informational.

 27

Recommendation:
Switch the to and mint in the input account list to be consistent with the instruction account
order.

Customer’s response: Acknowledged

Fix Review: Acknowledged

I-12. Unused circulating_lp_token_supply function

Description:

Since LP functionality has been removed from the protocol, there is no need for the

circulating_lp_token_supply function.

Recommendation:
Remove the function.

Customer’s response: Acknowledged

Fix Review: Acknowledged

 28

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

 29

	​
	Security Assessment
	Final v2 Report
	Project Summary
	Project Scope
	​Project Overview
	Protocol Overview

	Findings Summary
	Severity Matrix

	Detailed Findings
	High Severity Issues
	H-01 claim_standard_creator_trading_fees does not check if the trading volume has been reached
	H-02 Slot_offset fees cannot be enabled for protocol_trading fee and liquidity_provider fee
	Medium Severity Issues
	M-01 create_liquidity_pool_standard can overspend from payer without explicit cap
	M-02 update_protocol_config does not check valid fee config
	
	M-03 Inconsistent rounding can lead to edge cases where the swap returns tokens > max_limit, causing a revert
	M-04 amount_in calculation does not consider fees, causing sub-optimal trades and making it very difficult to buy up to maximum limit
	Low Severity Issues
	L-01 Updating supported_pool_type will lead to corrupted pools
	L-02 admin_mint_msol does not limit staking up to any % of available liquidity, which can break all pools
	L-03 admin_unstake_msol breaks if yield is lower than historical cost
	Informational Issues
	I-01. max_creator_trading_fee_bps returns global constraint instead of max actual fee
	I-02. Changing standard pool fee mode freezes fees to deploy status without update possibility
	I-03. assert_input_equal_token_supply is not used
	I-04. assert_processed_fee_status named could be clarified
	I-05. Allowing supported_pool_type None is redundant
	I-06. checked_sub has an error message stating Overflow
	I-07. credit from debt_and_credit is never used
	I-08. Unused variable in unstake_msol
	I-09. Naming ambiguity in fee and staking create functions
	I-10. Unused functions in token_util
	I-11. Input parameter order in transfer_with_hook can lead to errors
	I-12. Unused circulating_lp_token_supply function

	Disclaimer
	
	
	About Certora

